A study of polymorphic virus detection

Vinh T. Nguyen*
PhD student, Computer Science

Abstract

Traditional viruses were computer programs with static structure
exhibiting very limited functionality. Once identified for the first
time, their structure is utilized by antivirus (AV) software as a tool
for detecting the similar viruses with similar patterns. However,
modern viruses are smart enough to self-configure and even change
the pattern of their functionality making it hard for AV software
detecting them. A polymorphic virus is a complicated computer
virus that affects data types and functions making it difficult to in-
spect its internal structure. In this paper, we conduct a study of the
polymorphic virus to answer three research questions: (1) What are
the general techniques employed by these viruses to exhibit poly-
morphism? (2) What is the state-of-the-art of detecting polymor-
phic viruses? And (3) What should be made to help antivirus soft-
ware detect these viruses? The result of this study may provide a
good source of knowledge for polymorphic researchers and anti-
virus software company getting the overall picture of this virus and
thus provides a suitable solution to the problem.

Keywords: polymorphic virus, malware, anti-virus

1 Introduction

With the advent of science and technology, a computer has been
one of the most advanced devices over centuries that helps human
perform sophisticated work and save data. It is being used in our
daily life activities using desktop computers, laptops, tablets, smart
phones and hand-held devices. In the early day, computers are
mostly used to speed up calculations by a set of instructions with
limited storage capacity. Later on, this architecture was expanded to
store data inside storage devices such as floppy disk, optical disk,
hard disk, memory stick and so on. In competitive markets, this
data may contain highly sensitive information and becomes on of
the favorite targets for many attackers and tons of malicious pro-
grams were written to favor this data. These malicious codes are
known by many different names such as a virus, malware, botnet,
trojan, etc. for different purposes (i.e., for fun, for evil, or even for
good). They are often operated by inserting or attaching themselves
to another host program.

One typical harmless virus was known as Elk Cloner [Spafford et al.
1989] virus written by Richard Skrenta, a 15-year-old high school
student, around 1982 which displayed a little poem on the screen.
It did not damage any resources on computer but annoying people
with the message as shown in Figure 1. This virus was able to
spread to infect another operating system running Apache 11.

Inspired by understanding the biological evolution and self-
production, John von Neumann [Von Neumann and Burks 1996]
created the first self-replicating computer programs to be known in
the history. This program can be considered the foundation of many
modern virus.

Virus can penetrate into host computers in many different ways,
for example by email, text message attachments, social links, free
apps, fun images, audio, video files. Once it was triggered, it stayed
dormant and infect other computers in the networks. To avoid be-
ing detected, the virus author used various techniques to stealth the

*e-mail:vinh.nguyen @ttu.edu

Cloner:
program with a personality

It will get on all your disks
It will infiltrate your chips

s it's Cloner!

It will stick to you like glue
It will modif am too
Send in the Cloner!

Figure 1: A little poem message annoying users

0100100110101010101000100001
1111010101010101010101000110
1010101010101011010101000101
0101010101010100010101010101

100000111
110010101
000010101

1110101010101010101010011110
1010101001010101010101101010
1000101010000111011101010100
0111010101101010100100000111

Figure 2: Anti-virus signatures based detection

code. Traditional method avoided detection by not modifying the
”last modified” date of the host file when it was infected. Other
virus, for example Chernobyl Virus [Christodorescu and Jha 2006]
utilized the unused areas of executable files by overwriting them
with malicious code, this allows keeping the same size of infected
files. Another more advanced technique, Conficker [Porras et al.
2009] terminated the tasks associated with the anti-virus software
before it was detected.

As Operating Systems keep updating that do not allow to modify
the files or kill process without proper authorization, the virus au-
thors had to use another technique to hide their programming codes.

The first technique was known as self-modification [Anckaert et al.
2006], this technique was developed to counter the anti-virus soft-
ware (AV) that scans the virus by signature as depicted in Figure 2.
Basically, the AV will maintain a database that contains a list of
signatures for every detected virus. When it scan a file, it com-
pares the file’s signature with its signature database, once a string
is matched this file is considered to be infected then this file can be
deleted, locked or cleaned (remove the signature). To avoid detec-
tion, the virus modified itself with a new signature on every infected
file which can be shown as follow:

repeat N times {
increase A by one
do something with A
when STATE has to switch {
replace the opcode “increase” above
with the opcode to decrease,
or vice versa

By doing this way, virus authors can create an infinite number of
signatures.

Another method to avoid signature detection is through encryption,
this technique uses simple encryption method to cipher the body of
malicious code. Each encryption key will produce an encrypted
text, so the virus can replicate itself to many different files by only
modifying the encryption key. Each infected file will contain an
encrypted malicious code, decryption module and encryption key.
The unique encrypted malicious code will result in a different sig-
nature, thus make it difficult for AV to detect. The main drawback
of this technique is the decryption module which remains constant
through all infected files, opening a possible way for AV software
to detect.

In order to overcome the limitation of encryption method with a
constant decryption module, a new technique was developed to
make the decryption module from static to dynamic, that is, this
module will be modified in each infection. This method is called
polymorphic code [Torrubia-Saez 2003]. This polymorphic virus
has become one of the most challenging task for AV software to de-
tect since it is a self-encrypted virus and is able to duplicating itself
by creating slightly modified versions of itself.

A more advanced technique is metamorphic code [Borello and Mé
2008] in which the virus completely rewrite itself on every execu-
tion. However, this method is extremely expensive because it re-
quires a metamorphic engine, making it impractical in practice.

Hence, in this study, we focus on understanding the polymorphic
virus by addressing the following research questions:

e Q1: What are the general techniques employed by these
viruses in order to exhibit polymorphism?

e (Q2: What is the state-of-the-art of detecting polymorphic
viruses?

e (Q3: What should be made in order to help antivirus software
detect these viruses?

The rest of the paper is organized as follows: section 2 reviews the
state-of-the-art of detecting polymorphic viruses. section 3 presents
the general techniques employed by these viruses in order to exhibit
polymorphism. section 4 shows the potential approach to help an-
tivirus software detect these viruses. And section 5 concludes our
paper with recommendations.

2 Literature Review

Typically, to understand the pattern and behavior of a malicious
program, two general approaches are used in analysis: (1) static
analysis, and (2) dynamic analysis. Static analysis involves analyz-
ing binary signatures of the malware without executing it; whereas,
dynamic analysis observes the behavior of the running malicious
code in a controlled environment.

2.1 Static Analysis

Signature based approach: Signature detection [Griffin et al.
2009] is the simplest method and is the most widely used for tra-
ditional malware detection. This method constructs a database that
contains signatures of all known malware. When analyzing a new
programming code, it compares the signature of the analyzed virus
with its database, if the matching is found, the analyzed file is con-
sidered as virus. This approach is fast and has high positive rate,
however the database needs to be updated with new signature. Al-
though this technique is old but it was used in the early days of
polymorphic detection when investigator/researcher analyzed the
virus manually, one by one, line by line to detect various sequences
of programming codes [Bondarenko and Shterlayev 2006]. As the
number of virus has been increasing so fast, this technique quickly
becomes time-consuming, expensive and impractical.

System call analysis: Sung et al. [Sung et al. 2004] proposed the
Static analyzer for vicious executable (SAVE) to detect malware,
mostly focus on polymorphic and metamorphic virus which run on
Windows Operating System. This method works based on the as-
sumption that all malware variants share a common core signature
- a combination of several features of the programming code. In
their method, two critical steps were involved: First, the Portable
Executable (PE) decompressed and passed through a parser, this
parser produced a list of Windows API calling sequence. Second,
this API sequence will be compared against the signature database,
a similarity measure was used to conclude the analyzed file. If the
similarity is greater than a certain threshold, the detection is trig-
gered.

Control-flow graph:: Graphs are also used in static analysis
[Christodorescu and Jha 2006] and [Bonfante et al. 2007] where
a set of control flow graphs (CFG) were constructed and reduced
(where possible) and be used as a signature database. This method
works based on the assumption that the control flow graph of the
malware was not modified in most of the mutation engines. Detec-
tion is carried out by comparing the sub-GFGs of the malicious file
against the signature database to find if any sub-CFG is matched
with the database. However, this method does not work when an-
alyzing the metamorphic virus (example Zmist [Szor and Ferrie
2001] because this virus can change the code itself for each exe-
cution or changes to the branching structures of that flow graph.

Model checking: This method assumes that systems have finite
state or may be reduced to finite state by abstraction. Serge
Chaumette et al [Chaumette et al. 2011] used context-free gram-
mars as viral signatures and a process was designed to extract the
simple virus signature. This method was based on two assump-
tions: First, most mutating engines generate code belonging to a
language that is low complexity, that is, belonging to either natu-
ral language or context-free language. Second, the mutation engine
has to be embedded inside the self-replicating malware, hence it is
feasible to extract the grammar of the mutation engine via a static
analysis.However, this method is very time-consuming. Another
study was presented by Gerald R. Thompson and Lori A. Flynn
[Thompson and Flynn 2007], they compared the program hierar-
chical structure and mapped this structure to a context-free gram-
mar, normalizes the grammar, and finally, they used a fast check
for homomorphism between the normalized grammars. This tech-
nique is resilient despite polymorphism that reorders instructions
Jrewrites instructions, inserts instructions, or removes instructions.
This approach did not address encrypted files but can be applied af-
ter the file is decrypted if the unencrypted virus is suspected to be
polymorphic.

Data-flow analysis: This method gathers information about the
possible set of values of objects and variables involved in the spec-

imen. Agrawal, Hira, et al. [Agrawal et al. 2012] proposed a Mal-
ware Abstraction Analysis (MAA) method. They used two stages
to derive semantic signature of a binary instance: First, all func-
tions was analyzes and abstracting away all unnecessary control
flow artifacts from their flow graphs. Second, all local, function
level signatures were combined into a single, global signature while
abstracting away all call and return specific artifacts. This method
is resistant to such large scale, global transformations.

Machine learning analysis: In recent years, machine learning has
gained its popularity in many fields including security. Robert
Moskovitch et. al. [Moskovitch et al. 2008] proposed a technique
that monitors a small set of features that are sufficient for detect-
ing malware without sacrifice accuracy. The result of the study
showed that, only using 20 features, the mean detection accuracy
was greater than 90 percent, and for specific unknown worms, this
accuracy get over 99 percent, while maintaining a low level of false
positive rate. The advantage of machine learning techniques is that
it will not only detect a known malware but also act as a database
for detecting new malware. Similar studies can also be found in
another model such as Naive Bayes [Alazab et al. 2011], Decision
Tree, Neural Network [Moskovitch et al. 2008]. Although this tech-
nique is practical but it may not replace the standard detection meth-
ods, rather than act as an add-on feature because machine learning
techniques are computational and may not be suitable for end users.

2.2 Dynamic Analysis

Trevor YannOleg Petrovsky [Yann and Petrovsky 2006] proposed
an architecture to detect polymorphic virus, this architecture in-
cludes three components: (1) an emulator that emulates a selected
number of instructions of the computer program, (2) an operational
code analyzer that analyzes a plurality of registers/flags accessed
during emulated execution of the instructions and (3) an heuristic
analyzer that determines a probability that the computer program
contains viral code based on an heuristic analysis of register/flag
state information supplied by the operational code analyzer.

Polychronakis et al. [Polychronakis et al. 2006] presented a heuris-
tic detection method that scans network traffic streams for the pres-
ence of polymorphic shellcode. This algorithm relied on a fully-
blown [A-32 CPU emulator that makes the detector immune to
runtime evasion techniques such as self-modifying code. Each in-
coming request was executed in a virtual environment. Their algo-
rithm focused on identifying the decryption process that takes place
during the initial execution steps of a polymorphic shellcode. The
study result showed that the proposed approach is more robust to
obfuscation techniques like self-modifications. One limitation of
this approach was that it detected only polymorphic shellcodes that
decrypt their body before executing their actual payload, it did not
capture the shellcode that did not perform any self-modifications.

Antony et al. [Rogers et al. 2012] proposed an apparatus to detect
malicious code that uses calls to an operating system to damage
computer systems. This method will be creating an artificial mem-
ory region, this region may span one or more components of the op-
erating system. The malicious file will be executed and the method
try to detect whether the executable code attempts to access the ar-
tificial memory region. The method may comprise determining an
operating system call that the emulated code attempted to access,
and monitoring the operating system call to determine whether the
code is viral.

Another apparatus was presented by Igor et al. [Muttik and Long
2005] where they patched additional program instructions into an
emulator for detecting suspect code. During operation,a first emu-
lator extension was loaded into the emulator then the suspect code
was loaded into an emulator buffer within a data space of a com-

puter system. The suspect code was executed in the first emulator
extension. During this emulation, the system identifies whether the
suspect code is likely to exhibit malicious behavior.

In another work, Ignor [Muttik 2004] presented an apparatus for
detecting malicious software by analyzing patterns of system calls
generated during emulation. The malicious file was executed in
an isolated environment, the system calls pattern will be recorded
and compared against database containing suspect patterns of sys-
tem calls. Based upon the comparison result, the system identifies
whether the software is likely to exhibit malicious behavior.

Stepan [Stepan 2005] proposed a method to detect malware by dis-
assembling the malicious code dynamically then compiling this
code to target the CPU host, the execution file will be executed
safely on the host CPU. The code obtained can be used to com-
pared with the original cost. This method increases the analysis
speed significantly.

3 The polymorphic virus

The first polymorphic virus was written by Mark Washburn in 1990
[Szor 2005], it was known as 1260 or V2PX virus because of its
length (1260 bytes). Inspired by Ralph Burger’s publication and de-
rived from the original Vienna virus, Mark wished to show the anti-
viral community why identification string scanners did not work in
all cases. The length of the infected files will be increased by 1,260
bytes and be encrypted. The encryption key changes with each in-
fection. The V2PX was not resident inside the memory, it infects
*.COM files in the current or PATH directories upon execution Two
sliding keys were used to decrypt the virus body, but more impor-
tantly, junk instructions were inserted into the decryptor. These
instructions were useless in the code. They worked as a camour-
flag for the code. Depending on the number of inserted junk code,
the decryptor can be shorter or longer. Furthermore, each group of
instructions within the decryptor can be permutated in any order,
thus decryptor’s structure can change. Figure 3 shows an example
of decryptor. It can be seen from Figure 3 that, in each group of
instructions, a set of junk instructions are inserted (INC SI, CLC,
NOP, and other do-nothing instructions)

The next milestone development of polymorphic virus was the ad-
vent of Mutation Engine (MtE) [Bontchev 1992], this engine was

inc si ; optional, variable junk
mov ax,0E9B ; set key 1

clc ; optional, variable junk

mov di,012A ; offset of Start

nop ; optional, variable junk

mov cx,0571 ; this many bytes - key 2

; Group 2 - Decryption Instructions

Decrypt:

xor [di],cx ; decrypt first word with key 2
sub bx, dx ; optional, variable junk
H
H

xor bx, cx 5 optional, variable junk
sub bx, ax ; optional, variable junk
sub bx, cx 5 optional, variable junk
nop ; non-optional junk

xor dx, cx ; optional, variable junk
xor [di],ax ; decrypt first word with key 1
; Group 3 - Decryption Instructions

inc di ; next byte

nop ; non-optional junk

clc ; optional, variable junk

inc ax ; slide key 1

; loop

loop Decrypt ; until all bytes are decrypted - slide key 2
; random padding up to 39 bytes

Start:

Figure 3: An Example Decryptor of 1260

written by the Bulgarian Dark Avenger.The idea of the mutation en-
gine was based on modular development.The concept of MtE was
to make a function call to the MtE function and passed control pa-
rameters in predefined registers. The MtE will build a polymorphic
shell around the simple virus inside it. When a virus uses the engine
to write itself to a file, the MtE encryptor modifies the virus code so
it will look like random garbage. The decryptor will ungarble this
code once it is executed. The decryptor is the one part of the virus
that remains unencrypted. When an infected file is run, the decryp-
tor first gains control of the system, then decrypts both the virus
body and the MtE. Then, it will transfer control of the system to the
virus, which in turn will locate a new file to infect. The parameters
to the MtE engine include the following:

e A work segment

e A pointer to the code to encrypt

e Length of the virus body

e Base of the decryptor

e Entry-point address of the host

e Target location of encrypted code

e Size of decryptor (tiny, small, medium, or large)
e Bit field of registers not to use

The Decryptor Generated by MtE as shown in Figure 4 will return
a decryptor with an encrypted virus body in the supplied buffer.
From this point, the MtE and the virus itself are copied in random
access memory (RAM). The mutation engine was invoked then it
randomly generated a new decrytor capable of decrypting the virus.
Next, the MtE and the virus are encrypted. Finally, the virus ap-
pended this new decryptor, along with the newly encrypted virus
and MtE onto a new target.

As aresult of this stage, the decryptor varied in each infectioin mak-
ing it difficult for virus scanner searching for the tell-tale sequence
of bytes that identifies a specific decryptor because there is no fixed
signature, decryptor or no alike two infections.

; to "Start"-delta

mov cl,e3 ; (delta is ©x@D2B in this example)

ror bp,cl

mov cx,bp

mov bp,856E

or bp,740F

mov si,bp

mov bp,3B92

add bp,si

xor bp,cx

sub bp,B10C ; Huh ... finally BP is set, but remains an

; obfuscated pointer to encrypted body

Decrypt:
mov bx, [bp+6D2B] ; pick next word
; (first time at "Start")
add bx,9D64 ; decrypt it
xchg [bp+6D2B], bx ; put decrypted value to place
mov bx,8F31 ; this block increments BP by 2
sub bx, bp
mov bp,8F33
sub bp, bx ; and controls the length of decryption
jnz Decrypt ; are all bytes decrypted?
Start:

Figure 4: An Example Decryptor Generated by MtE

The complexity of each polymorphic virus ranges from simple to
complex. Generally, it can be classified into different levels:

e Level 1: To generate a polymorphic virus, a scheme is cho-

sen from a set of encryption/decryption schemes. An instance
of the virus will have one of these schemes in plain text as
shown in Figure 5. The public key for this encryption can
be distributed to many takers to encrypt the message. This
simple is so called ”semi-polymorphic”.

Encryption

Decryption

.

Figure 5: A simple semi-polymorphic virus method

e Level 2: Virus decryption routine contains one or several con-

stant instructions, the rest is changeable as shown in Figure 6,
the algorithm using the variables A and B but not the variable
C, allowing C to be changed endlessly.

lots of encrypted code

Decryption_Code:

C=C+1

A = Encrypted
Loop:

B = *A

C = 3214 * A

B = B XOR CryptoKey

*A = B

c=1

C=A+8B

A=A+1

GOTO Loop IF NOT A = Decryption_Code

C =C"2

GOTO Encrypted
CryptoKey:

some_random_number

Figure 6: A simple polymorphic virus method

Level 3:The virus decryptor contains unused functions or in-
structions like NOP, CLI, and STI so on as shown in Figure 3

Level 4: The virus decryptor uses interchangeable instruc-
tions and changes their order (instructions mixing) as shown
in Figure 7

Level 5: At this level, the polymorphic virus utilized all of
the above techniques. In addition, the decryption algorithm is
subject to change.

Level 6: Per-mutating viruses. This is the highest level of
polymorphic virus and is to be known as body-polymorphic
virus or metamorphic virus. At this stage, the whole main

with key in AL

Figure 7: Instructions are order-independent

code of the virus is subject to change as shown by generations
in Figure 8.

GENERATIONS OF A COMPLEX
METAMORPHIC VIRUS

//////}»
7
;///////,/////7/

'//////%//////5////
/?/??%//f//////////////%
77 7 ///”///

7
64/5?5///5/?/%//%/
-
7 7 2
.
///////4/////////////////////
.
// i ///////////
7 ///////

G, /
s 7

i

0

% /////////////
////// ///////

0 4

Figure 8: Generations of complex metamorphic virus

4 Changes to AV software

Due to the changes of polymorphic virus at different levels in the
previous section, the anti-virus scanner and researcher have differ-
ent strategies to fight back the virus.

The most handy work is to analyze the virus one by one, line by
line, but this method is time-consuming, costly and impractical and
also leads to mistakenly identifying one polymorphic as another.
A generic method is employed [Nachenberg 1996], generally, this
method assumes that:

e To avoid detection, the body of a polymorphic virus is en-
crypted.

e Decryption process must be performed before the virus can
execute normally.

e Once an infected file executes, a polymorphic virus must take
control of the system to decrypt the virus body, then yield
control of the computer to the decrypted virus.

Based on this behavior, the anti-virus scanner loads the infected
file into a self-contained virtual computer created from RAM. The
infected file run as if it is running on a real computer. The execution
is controlled by the scanner so that the virus can not do any damage

to the real computer. When the virus runs, it exposes its body to the
scanner, which in turn can search for signatures in the virus body
that precisely identify the virus strain. If there is no virus to expose,
the AV quickly stops running the file, removes it from RAM, and
proceeds to scan the next file.

Speed is the key problem with generic decryption approach. It will
be impractical if the polymorphic decrypts and executes in RAM
for several hours. On the other hand, if the process of detection
stops shortly, it may miss the main malicious code before it is able
to reveal enough of itself for the scanner to detect a signature.

To overcome this drawback, a heuristics-based is employed. This
method contains a set of rules that helps differentiate non-virus
from virus behavior.This method works based on the assumption
that normal operation will perform some math computations and
uses these results. On the other hand, polymorphic virus may
perform similar computations but throw away the results. The
heuristic-based generic decryption looks for such inconsistent be-
havior to decide whether to extend the length of time a suspect file
executes inside the virtual computer, giving a potentially infected
file enough time to decrypt itself and expose a lurking virus. How-
ever, this method gives high false negative when it alters its rule
base to detect new viruses. When virus authors try to make virus
look like a clean program causing the scanner lengthen the time it
needs to examine a suspicious file. Hence, this approach quickly
become inaccurate, inefficient and obsolete in practice.

The Striker System

This system is provided by Symantec Cooperation Anti-virus com-
pany. The first step is similar to previous approach, that is, it loads
the infected into the virtual computer from RAM. However, it does
not rely on heuristic guess but on the profiles of the virus or rules
specified to each virus, not to differentiate from non-virus and virus
behavior.

When examining a new file, the system first tries to exclude as many
viruses as possible from consideration. For example, some virus
may only infect .COM files or .EXE files, or .SYS. When checking
the infected file with extension .EXE, the Striker elaborates poly-
morphic virus that infects only .COM or .SYS files. If all viruses
are excluded from consideration, then the file is considered to be
clean the system will close and scan to the next file. After the pre-
liminary step, if no infection is detected, the Striker keeps running
the file in the virtual computer as long as this file has the behavior
mapping with at least one known polymorphic virus or MtE.

The advantage of the Striker’s approach is speed because the virus
profiles not only enable the system quickly excludes some poly-
morphic viruses but also to process uninfected files quickly, hence
minimizing the work load for the system.

So far, the generic decryption has been considered as the sin-
gle most effective method of detecting polymorphic virus and the
striker system improves on this approach.

As new anti-virus systems have been developed, virus authors also
have new ways to write code, making this battle never ends.

In recent years, artificial intelligence has emerged as a new trends in
many fields including malware detection. This promising method
has been proved in the study of Asiru et al.[Asiru et al. 2017]. Their
proposed model is shown in Figure 9 with the average accuracy
detection rate of 80 percent.

5 Conclusion and Recommendation

In this paper, we have studied the polymorphic virus. Detection
methods are analyzed based on static and dynamic analysis. Poly-

Virus signature database
Derive signature
— . Mutating
SNE B B Engine > €1add1205808153b23e06182b7 105005

(Conversion of signatures to decimal \

{ of in decimal)
L J
Neural network (Detector) training ™\
)= @ ® -
% N 10 Existing
x P ©) 0 1 Derive

Neural network testing \

Figure 9: The proposed model of using artificial intelligence for
malware detection

morphic virus are studied from low level to high level with some
example codes. We also investigated how anti-virus software ana-
lyzes the infected file and shows pro-missing approach for malware
detection in the future. To combat the never ending virus gener-
ation, the anti-virus software company should work closely with
researchers to find potential approach that both work efficiency and
accuracy.

References

AGRAWAL, H., BAHLER, L., MICALLEF, J., SNYDER, S., AND
VIRODOV, A. 2012. Detection of global, metamorphic mal-
ware variants using control and data flow analysis. In MIL-
ITARY COMMUNICATIONS CONFERENCE, 2012-MILCOM
2012, 1IEEE, 1-6.

ALAZAB, M., VENKATRAMAN, S., WATTERS, P., AND ALAZAB,
M. 2011. Zero-day malware detection based on supervised
learning algorithms of api call signatures. In Proceedings of the
Ninth Australasian Data Mining Conference-Volume 121, Aus-
tralian Computer Society, Inc., 171-182.

ANCKAERT, B., MADOU, M., AND DE BOSSCHERE, K. 2006.
A model for self-moditying code. In International Workshop on
Information Hiding, Springer, 232-248.

ASIRU, O., DLAMINI, M., AND BLACKLEDGE, J. 2017. Appli-
cation of artificial intelligence for detecting derived viruses. In
European Conference on Cyber Warfare and Security, Academic
Conferences International Limited, 647-655.

BONDARENKO, Y., AND SHTERLAYEV, P., 2006. Polymorphic
virus detection technology.

BONFANTE, G., KACZMAREK, M., AND MARION, J.-Y. 2007.
Control flow graphs as malware signatures. In International
workshop on the Theory of Computer Viruses.

BONTCHEYV, V. 1992. Mte detection test. Virus News Int, 26-34.

BORELLO, J.-M., AND ME, L. 2008. Code obfuscation techniques
for metamorphic viruses. Journal in Computer Virology 4, 3,
211-220.

CHAUMETTE, S., LY, O., AND TABARY, R. 2011. Automated
extraction of polymorphic virus signatures using abstract inter-
pretation. In Network and System Security (NSS), 2011 5th In-
ternational Conference on, IEEE, 41-48.

CHRISTODORESCU, M., AND JHA, S. 2006. Static analysis of ex-
ecutables to detect malicious patterns. Tech. rep., WISCONSIN
UNIV-MADISON DEPT OF COMPUTER SCIENCES.

GRIFFIN, K., SCHNEIDER, S., Hu, X., AND CHIUEH, T.-C.
2009. Automatic generation of string signatures for malware
detection. In International workshop on recent advances in in-
trusion detection, Springer, 101-120.

MOSKOVITCH, R., ELOVICI, Y., AND ROKACH, L. 2008. Detec-
tion of unknown computer worms based on behavioral classifi-
cation of the host. Computational Statistics & Data Analysis 52,
9, 4544-4566.

MUTTIK, 1., AND LONG, D. V., 2005. Detecting computer viruses
or malicious software by patching instructions into an emulator,
June 14. US Patent 6,907,396.

MUTTIK, 1., 2004. Detecting malicious software by analyzing pat-
terns of system calls generated during emulation, Aug. 10. US
Patent 6,775,780.

NACHENBERG, C. 1996. Understanding and managing polymor-
phic viruses. The Symantec Enterprise Papers 30, 16.

POLYCHRONAKIS, M., ANAGNOSTAKIS, K. G., AND
MARKATOS, E. P. 2006. Network-level polymorphic
shellcode detection using emulation. In International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer, 54-73.

PORRAS, P., SAIDI, H., AND YEGNESWARAN, V. 2009. Con-
ficker c analysis. SRI International.

ROGERS, A. J., YANN, T., AND JORDAN, M., 2012. Detec-
tion of viral code using emulation of operating system functions,
Dec. 25. US Patent 8,341,743.

SPAFFORD, E. H., HEAPHY, K. A., AND FERBRACHE, D. J.
1989. A computer virus primer.

STEPAN, A. E. 2005. Defeating polymorphism: beyond emulation.
In Proceedings of the Virus Bulletin International Conference.

SUNG, A. H., XU, J., CHAVEZ, P., AND MUKKAMALA, S. 2004.
Static analyzer of vicious executables (save). In Computer Se-
curity Applications Conference, 2004. 20th Annual, IEEE, 326—
334,

SZOR, P., AND FERRIE, P. 2001. Hunting for metamorphic. In
Virus Bulletin Conference.

SZOR, P. 2005. The art of computer virus research and defense.
Pearson Education.

THOMPSON, G. R., AND FLYNN, L. A. 2007. Polymorphic mal-
ware detection and identification via context-free grammar ho-
momorphism. Bell Labs Technical Journal 12, 3, 139-147.

TORRUBIA-SAEZ, A., 2003. Polymorphic code generation method
and system therefor, July 8. US Patent 6,591,415.

VON NEUMANN, J., AND BURKS, A. W. 1996. Theory of self-
reproducing automata. University of Illinois Press Urbana.

YANN, T., AND PETROVSKY, O., 2006. Detection of polymor-
phic virus code using dataflow analysis, June 27. US Patent
7,069,583.

